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The internal-wave system is calculated for a body oscillating transversely, 
and translating uniformly, through an infinite stratified fluid of constant Brunt- 
Vaisala frequency. A linearized, time-dependent analysis is used, in which the 
vertical displacement of a fluid element is the basic dependent variable. Axisym- 
metric slender-body theory for a homogeneous fluid is used to determine the 
time-dependent source and dipole distributions required to represent the 
motion of the body for excitation of the internal waves. The equations are solved 
by Fourier-transform techniques; and the internal-wave amplitude is evaluated 
in the far field by the method of stationary phase. The surfaces of constant phase 
are found to change character as the ratio of the oscillation frequency (0 of the 
body to the Brunt-Vaisala frequency N varies through unity. Along preferred 
directions, the amplitude of the internal waves is found to decay inversely with 
distance to  the $ power, whereas, for uniform translation, the amplitude of the 
internal waves falls off inversely with distance from the body. An asymptotic 
expression for the amplitude in preferred directions is calculated for several values 
of the ratio WIN. 

1. Introduction 
As a body travels horizontally through a non-uniform stratified fluid, it  may 

undergo pitch and heave oscillations that are superimposed on the otherwise 
uniform horizontal motion. The pitch and heave oscillations of the body relative 
to the ambient stratified fluid will induce internal waves. In  this paper the ampli- 
tude of the internal waves excited by such a body both translating and under- 
going heave oscillations through a quiescent, stratified fluid is calculated, and 
compared with the internal-wave amplitude excited by the uniform horizontal 
motion of the body. 

I n  § 2 a review is given of the literature on internal waves excited by an oscilla- 
ting or a translating and oscillating body. I n  $ 3  a general formulation is pre- 
sented for determining the internal-wave field excited in a stratified fluid by a 
slender translating and heaving body. For the case in which the ambient strati- 
fication is exponential, so that the Brunt-Vaisala frequency is constant, the 
solution is determined in integral form by Fourier-transform techniques. I n  
$ 4  the asymptotic behaviour of this integral far from the source is examined. 



236 R. G .  Rehnz and H .  8. Radt 

In  $ 5  the asymptotic expressions for the internal waves excited by heave motion 
of a body are calculated, and the behaviour of these waves with changes in velo- 
city of the body, and changes in the ratio of the heave frequency to the Brunt- 
Vaisalii frequency is discussed. 

2. Review of previous work on internal waves excited by an oscillating 
body 

I n  a fluid with its density stably stratified in the vertical direction z ,  the 
natural oscillation frequency is the Brunt-Vaisala frequency, defined by 

g is the acceleration of gravity, and dp,/dz is the local density gradient. The time 
scale To = 2n/N is the local charact.eristic time for internal waves to occur 
naturally in the fluid. 

Mowbray & Rarity (1967) examined experimentally and theoretically the two- 
dimensional internal-wave system excited by a cylinder oscillating in a strati- 
fied fluid where the Brunt-Vaisala frequency is approximately constant.? 
They found that internal waves can be excited provided the frequency of oscilla- 
tion o of the body does not exceed the Brunt-Vaisala frequency. For frequencies 
greater than the Brunt-Vaisala frequency, internal-wave oscillations will not 
be sustained. They also found that, when internal waves are excited, significant 
amplitudes in the internal-wave system occur only in regions emanating along 
preferred directions from the oscillating cylinder. The preferred directions are 
determined by the angle 8, measured from horizontal, where 

sin0 = + w / N .  (2) 
The variation of the angle 8 with variation in the frequency w of the oscillating 
body was measured, and it was verified experimentally that the Brunt-Vaisala 
frequency N is the high-frequency cut-off. 

In  a theoretical paper, Hendershott (1969) determined the amplitude of the 
internal waves at large distances from a sphere which excites these waves by 
‘breathing’ fluid in and out a t  a given frequency w < N .  His analysis included 
the effects of rotation of the fluid, as well as constant-N stratification. At long 
times after the sphere has begun to pulsate, if the effects of rotation are neglected, 
an axisymmetric flow field develops, very similar to that described by Mowbray 
& Rarity. Internal waves of significant amplitude are almost entirely confined to 
regions determined by the preferred directions. I n  this case, the regions are the 
axisymmetric ones defined by vertical cones of constant angle 0, tangential to 
the sphere above and below. Along the preferred direction, the magnitude of the 
vertical velocity decreases inversely as the square root of the radial distance from 
the sphere. I n  regions outside the preferred ones, the amplitude approaches 
zero inversely as the square of the radial distance from the sphere. 

t A constant Brunt-VaisaIB frequency N implies an exponentially stratified fluid with 
density po(z) = poo exp ( - N2z /g ) ,  where poo is the density at z = 0, and z is measured positive 
upward. 
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Stevenson & Thomas (1  969) extended the experimental studies of Mowbray 
& Rarity to the case of an oscillating cylinder moving with a uniform velocity 
in an arbitrary direction. They derived the dispersion relation for waves gener- 
ated by the cylinder and tested some of the predictions of this relation experi- 
mentally. 

Stevenson (1973) further extended these studies to the case of transient 
motions and curved motion of a body in a stratified fluid. He found reasonable 
agreement between theoretical predictions and experimental observations of the 
phase configuration of the internal waves, but did not determine the amplitude 
of these waves. 

Analysis of the internal waves produced by a uniformly moving dipole, 
or by a quadrupole source in a stratified fluid, was performed by Miles (1971). 
Such sources are usually considered to produce the dominant terms in the 
description of the internal-wave disturbances excited by a body and by the 
collapse of the turbulent wake behind a body. Miles solved the linearized 
equations for the amplitude of internal waves excited by a dipole oriented 
horizontally and translating uniformly along its axis. He analysed both the 
constant-N case and the case of a thin thermocline, using Fourier-transform 
analysis and stationary-phase asymptotic evaluation of the resulting integral 
expressions for the solution. In  this paper, the analysis of Miles is extended 
by using slender-body theory to formulate explicitly the boundary conditions 
for a body translating uniformly in the horizontal direction and oscilIating with 
a heaving motion. The dipole solution which Miles determined in the constant-N 
case is the same as the solution determined in this paper for a small body in uni- 
form translation. 

Keller & Munk (1970) also examined the internal-wave amplitudes generated 
by a uniformly translating excitation source in a stratified medium of variable 
Brunt-Vaisala frequency. Their analysis was rather general, applicable to wave 
systems generated by a moving source in any dispersive, anisotropic medium. 
But it did not explicitly relate the excitation source to the body dynamics, as 
we do. 

McLaren et al. (1973) reported measurements of the amplitude of the internal 
waves excited by an oscillating body. They found that the amplitude along the 
preferred directions appears to fall off with increasing distance as (a/R)*, where 
R is the radial distance from the bobbing sphere, and a is the radius of the sphere. 

Rao (1973), in a theoretical paper, examined the wave pattern generated by 
a two-dimensional translating and oscillating forcing effect in a rotating fluid. 
He used the methods developed by Lighthill (1959,1967) for waves in a dispersive 
and anisotropic fluid. He also noted that the analogy which exists between the 
dynamics of rotating fluids and stratified fluids may be used to relate some of his 
results to similar phenomena for two-dimensional effects in stratified fluids. 

3. Formulation of the solution for a translating, heaving body 
The model used to make an estimate of internal waves from heave oscillations 

is one in which the assumptions are generally similar t o  those used in the analyses 
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1' 

FIGURE 1. Reference axes. 

discussed in 5 2 .  The stratified fluid is assumed to have an exponentially increas- 
ing density with increasing depth so that the Brunt-Vaisala frequency is con- 
stant, the so-called constant-N model. The Boussinesq approximation is made: in 
this approximation, density variations are considered only in the buoyancy terms 
in the equations of motion, the density being taken as constant in the inertial 
terms. A small-amplitude or linearized analysis is used for the calculation of 
internal waves, and slender-body theory is used to apply boundary conditions at  
the body. The body is assumed to be translating uniformly in the horizontal 
direction (chosen to be the negative x direction) and to be undergoing small- 
amplitude heaving oscillations. The z axis is chosen positive upward, with the 
y axis horizontal and transverse to the translation (see figure 1). 

The linearized equation for the vertical displacement 5 of a fluid element, due 
to internal waves excited by a source distribution of magnitude Q ,  is (see e.g. 
Miles 1971) 

[a; 2: + (a; + N 2 )  (22 + a;)] 5 = a, a,(?. (3) 

t is tirne, and the symbol 2 with a subscript denotes differentiation with respect 
to the variable used in the subscript. 

Slender-body theory can be used to determine the internal-wave field for an 
axisymnietric body of arbitrary cross-sectional area X(x). When the transverse 
dimension a of a body is much less than the length scale i l k  = U / N  (based 
upon the velocity U of the body and the Brunt-Vaisala frequency N ,  so that 
ka G l), the fluid is homogeneous locally around the body, and the flow is poten- 
tial. There will be a region €or which a 4 R < ilk, where R is the distance from the 
body, in which the flow is unaffected by the stratification (as described by Miles 
197 1 ). In  this region, in a linearized analysis, the flow-field resulting from arbi- 
trary motion of an axisymmetric body along the x axis can be represented by a 
general source-sink distribution along the x axis. This source distribution is 
determined from the boundary condition that the fluid velocity be zero in a 
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direction normal to the body surface, and can be determined using slender- 
body theory (see e.g. Liepmann & Roshko 1957, ch. 9; Frankl & Karpovich 
1953, ch. 2). 

When the body is both translating and heaving, in a linearized analysis, the 
flow field relative to the axisymmetric body can be divided into two super- 
posabIe components: the axial and the cross flow. For a uniformly translating 
body of arbitrary cross-section S(x)  for 0 6 x < 1, the source distribution that 
yields the potential flow over the body is 

multiplied by a point source at  x + Ut = 6,  y = 0, x = 0. If we denote by g@) the 
solution of (3) for this source distribution, then <(a) satisfies 

[a~aq+(aq+N2)(a;+a~)]<(u) = azat [ u 1: d'5--6(<-x- d:F U t ) 6 ( y ) S ( z ) ] .  (4) 

5'") will be called the axial-flow solution. 
In  a potential flow, when the cross-flow boundary condition is applied for a 

body heaving with amplitude h and frequency w, the cross-flow component can 
be represented by a distribution of vertically oriented dipoles (see Frankl & 
Karpovich 1953). If the same distribution of dipoles is used in the stratified case, 
the equation satisfied by the cross-flow internal-wave amplitude 5'") is 

[ a: + (a! + P) (a; + a;)] 5'"' 
= a:a, [zhoexp(iwt)s~dgs(g)6(6-~-  1 ~ t ) 6 ( y ) ~ ( z ) ] .  ( 5 )  

Let G(a)(x, y, x ,  t ;  6) be the Green's function for the vertical displacement of a 
fluid particle in an internal wave excited by a point source at position 6 along the 
x axis and translating with velocity - U along this axis. Then 

c(a)(x, y, z, t )  = d[  U G(a) (x, y ,  z, t ;  t)* ( 6 )  

(7) 

1: d'5 
G@) satisfies 

[a:aq+(aq+w) (a;+a;)l G(") = a,a,[s(t:-x- u t )a(y)6(2)] .  

Similarly, let G@)(x, y, x ,  t ;  6 )  represent the Green's function for the vertical dis- 
placement of a fluid particle produced by a vertically oriented dipole oscillating 
in strength with frequency w and translating with velocity - U along the x 
axis. Then 

(8) [@)(x, y ,  Z, t )  = d t  2hwS(5) G(") (x ,  y ,  Z, t ;  '5). 1: 
Gee) satisfies 

[a: 8; + (a$ + N2) (a; + a:)] G(c) = 8: a, [exp (iwt) 6( 6 - x - Ut)  6(y) 6(2)] .  (9) 

The simplest case to treat, and a case which will display the important features 
of the internal-wave system excited by a translating and heaving body, is 
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when the Brunt-V&isd& frequency N is constant. Lighthill (1959,1967) presented 
general methods for solution by Fourier-transform techniques of problems of the 
type given by (9). Use of the Fourier integral, where 2 = x - 6, 

x exp [i(a2 +By + yz)] (10) 

( (aU + w)2y2-t [ ( a ~  + w)2-  N2] (a2 +/I",) G(c) = - i y 2 ( a ~  + w )  exp ( i a ~ t ) .  ( I  1) 

transforms (9), when N is constant, into 

Equation (1 1) has the formal solution 

(12) 

Equations (6) and (8)) respectively, give the internal-wave amplitudes gener- 
ated by uniform translation and by transverse heave oscillations, of a slender 
body. For a slender body, the ratio of the transverse dimension a of the body 
to its length I is small. If, in addition, the body is small, EN/U < 1. For a sinall, 
slender body, Miles (1971) pointed out that the internal-wave amplitude excited 
by translation is proportional to the Green's function for a uniformly translating, 
horizontally oriented dipole. In  our notation this Green's function is i?,G(a), 
with < = 0, and 5'") g U@a,G(a), where 8 is the mean cross-sectional area of the 
body. 

Similarly, for a small, slender body, the internal-wave amplitude due to trans- 
verse oscillations will be proportional to the Green's function G(c), with 6 = 0, 
Qc) g Shw1~5'G(~),. Because of this proportionality for a small, slender body, the 
properties of the Green's function will be ascribed to the internal-wave amplitude 

The amplitude of internal waves due to  transverse oscillations of a translating 
and oscillating slender body, compared with that of those due to only a trans- 
lating body, is given by the ratio 

6'"). 

To estimate this quantity, one requires values for the ratio hw/U. In  addition, 
the asymptotic values of the two integrals above are required for large values 
of R = [(2+ Ut)2+y2+z2]8. Miles (1971) evaluated i?,G(") asymptotically. The 
asymptotic evaluation of G@) is discussed in 5 4. 
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4. Asymptotic evaluation of the Green's function for a translating, 
oscillating dipole 

The integral over y in (12) is evaluated directly by using residue theory, as 
described by Lighthill. The condition that the disturbance source excites only 
outgoing waves a t  large distances from the disturbance is required to make the 
integrals unambiguous. When this is done, the integral €or G(C) becomes 

[l- ( a U / N  + O J / N ) ~ ] +  
( a U / N  + w / N )  

a(2 + U t )  + ,8y + (a2 +P2)* 

This integral can be rewritten, if we define a phase function q5 and an amplitude 

(az+/32)*[1 - ( a U / N  + O / N ) ~ ] +  
N(aU/N + w / N ) ~  ' 

where ?i = 2 + Ut and R = [?? + y2 + 9]*. Then G@ becomes 

4.1. Points of stationary phase 

In  this form the method of stationary phase can be applied to evaluate the inte- 
gral in (17) .  The method requires that the amplitude function be smooth, and 
slowly varying compared with the oscillatory exponential factor. Although f 
is singular a t  a = - w / U ,  the singularity does not contribute to the integral in 
(17). The method also requires R to be large, so that R N / U  9 1. Only near points 
where the phase is stationary will the contribution to the integral be large; 
these points are given by the conditions 

Solution of the second of these relations gives p as a function of a for points 
of  stationary phase : 

16 F L M  68 
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Substitution of Po from (19) into the first of (18) gives the relation for determining 
the values of a at which the phase is stationary 

With 5 = (aU/N + w / N )  the square of this relation may be written as 

wherer2 = y2+z2, R2 = r2+Zz,  5 = x+ Ut. (<is not related to the c used in $3.) 
which satisfy (21) will depend upon the ratio WIN, and upon 

the direction from the body, but are independent of U / N .  However, only the 
real roots of (21) are points of stationary phase, and of these roots only those 
which satisfy (20) are stationary-phase points. 

An important qualitative difference occurs between the internal-wave system 
excited by a translating, oscillating body and that excited by a body only 
translating. A body only translating will generate internal waves of significant 
amplitude solely in the region behind the body. The estimate of the internal 
waves for a uniformly translating dipole given by Miles is for those waves down- 
strea,m of the body. As Miles pointed out, “internal gravity waves. . . appear 
only downstream of their sources in a steady flow ”. By contrast, a body both 
translating and oscillating can excite internal waves both upstream and down- 
stream of the body when WIN < 1. 

This qualitative difference can be seen by examination of (20). When w/iV = 0,  
this relation determines the points of stationary phase for a body only trans- 
lating. Equation (21) reduces to a quadratic equation, yielding two possible 
points of stationary phase. When Z < 0 (i.e. upstream), neither of these roots 
satisfies (18); and there is no contribution to integral (14) by the method of 
stationary phase. But, when 5 > 0 (i.e. downstream), both roots satisfy (ZO),  
and there are two contributions. Hence, the internal waves of significant ampli- 
tude, as determined by this method, occur only downstream of the translating 
body. 

When 0 < w / N  < 1, roots of (21) satisfy (20) for X > 0 or X < 0, depending 
on whether sgn (a) [o/N - (aU/N + w / N ) ~  (y2/z2 + l)] is < 0 or > 0. Hence, there 
are contributions to integral (14) by the method of stationary phase for both 
5 > 0 and 5 < 0; and internal waves propagate both downstream and upstream 
of the translating, oscillating body. 

For arbitrary w/N and general directions, it is not possible to obtain the roots 
of (21) in analytical form. Therefore, a numerical program was written to calcu- 
late t8hese roots. For this purpose, (21) was rewritten, using the directions 0 
and defined as 

The values of 

I x = R cos 0, O<R<co,  

i y = RsinOcoscD, 

x = RsinOsinQ, 

0 6 0 6 n, 

0 < Q < 2n. 
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@\@ Qn 
4.77 0.121 1659 

- 04432749 
0-367 357 6 

- 0.3307695 

4. 0.1655123 

0.6684691 
- 0.184878 

- 0.6335528 

& 0.18967 18 
- 0.2084446 

0.8691646 
- 0.8345031 

:n 0.1974823 
-0.2161161 

0.9395992 
- 0.9049894 

in 
0.3295014 
0.1690617 

0.5708069 
0.2354168 

0.7286919 
0.2718658 

0.7837959 
0.2836835 

Qn 
0.2853967 
0.2073608 

0.45947 12 
0.2978747 

0.5672829 
0.3484745 

0.6041047 
0.3649947 

8. 
0.24465820 
0.24465820 

0.36840315 
0.368403 15 

0.42882689 
0.42882689 

0.46415888 
0.46415888 

TABLE 1. Roots of (23) for w/N = 0.1 

@\O Qn 
+n 0.3787832 

0.2849855 

t. 0.7024413 
0.3701491 

in 0.9093992 
0.421 1324 

$77 0.4378267 
- 0.6479774 

0.9814831 
-0.7071068 

t n  
0.3295014 
0.1690617 

0.6885052 
0.500 

0.8709282 
0.5734475 

0.9332624 
0,5977362 

#.. 
No real roots 

0.6649701 
0.5785319 

0.8 173 129 
0.6751176 

0.8684060 
0.7071068 

8. 
0.41835964 
0.41835964 

0.62996053 
0.62996053 

0.75289354 
0.75289354 

0.79370053 
0.79370053 

TABLE 2. Roots of (23) for o/N = 0.5 

@\@ gn $7 in 
477 No real roots No real roots No red roots 

t7-l 0.7068760 0.7054760 No real roots 

in 0.9212846 0.9125978 0.8947992 
0.5204584 0.7009841 0.8032004 

an 0.995137 5 0.9799896 0.9525777 
0.5400064 0.7284082 0.8393701 

0.46239 17 0.6269878 

TABLE 3. Roots of (23) for w/N = 0.75 

477 

0.47890223 
0.47890223 

0.72 11247 8 
0-72 11247 8 

0.86184794 
0.86 184794 

0.90856030 
0-90856030 

16-2 
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@\O &n in Qn 
1.n No real roots No real roots No real roots 

$?l 0.7016033 No real roots No real roots 
0.5173969 

0.9238272 0.9235923 0.9226031 
0.5753723 037753912 0.8777110 

in 0.9991807 0.9960426 0.9876310 
0.5958825 0.8019749 0.9 120642 

TABLE 4. Roots of (23) for cd/N = 0.9 

.tn 
0.50890956 
0.50890956 

0.76630944 
0.76630944 

0.9158501 1 
0.91585011 

0.96548938 
0-96548938 

Thus (21) becomes 

F -  t4cos20sin2@- t3 sinz6sin4@ = 0. (23) 

Tables 1-4 present, for various directions 19 and @, values of the roots & to 
(23) for w/N = 0.1, 0-5, 0.75, and 0-9, respectively. 

4.2. Asymptotic evaluation of the Green’s function for arbitrary directions 

In  the neighbourhood of a point of stationary phase (aj, p,), the phase function 
$ can be expanded to second order in a two-dimensional Taylor series as 

Q(a,P) z Q(aj>Pj) + t[sb,,(ajipj)(a--ai)’+2$,8(ajiPj) (a-aj) (P-Pj) 

+ $ p p ( q ,  Pi) (P-Pj)”. (24) 

Subscripts denote differentiation; and the explicit dependence of the phase 
function upon the directions in space and upon the parameters U / N  and o / N  
has been suppressed. By a simple rotation of axes in wavenumber space 

a-aj  = qcos$-csin$, P-pi = qsin$++cos$, (25 )  

the phase function can be writt,en as 

K ,  are the principal curvatures in wavenumber space, and the angle $ has been 
selected to eliminate the ‘cross term’, which would be multiplied by cf in the 
general expression, i.e. 

The integral for G@) in (1 4) can be approximated by the sum over all points of 
stationary phase of the contributions to the integral a t  each point. To obtain 
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an explicit expression for G("), various quantities must be evaluated a t  the sta- 
tionary-phase point (aj,Pj). Using &. again to represent a root of (23), we find 

$xx ,  and $a'.a are defined by comparison with the relations above. Then 

Also, 

Then expression (1 7) for G@) becomes 

exp ( iw t )  xc--- 1 a$ Rf exp {$in [sgn (K,) + sgn (K-)]}  G(d = 

2(277) j RAT x ($ax - Y 2/z2$$>: 

There are two important features to note from (32). First, for an arbitrary 
direction relative to the body, the fall-off of the amplitude with distance from the 
body is as 1/R. The fall-off with distance of the internal-wave system from a 
uniformly translating body is also as l /R.  Hence, from (13) the relative effect 
of the heave motions will be independent of radius and will be of the order of the 
ratio of the transverse velocity of the body to the translational motion of the body, 
which mostly likely is small. 

Second, there will be special directions in space, analogous to the preferred 
directions for an oscillating body a t  rest, along which the asymptotic expression 
for G@), given by (32), fails to be valid. In  these directions, one of the principal 
curvatures in wavenumber space vanishes (say K ) ,  and the factor in the de- 
nominator of (32) becomes zero: 

$xx $BBp - Y 2/z2 $2) = 0. (33) 

I n  these directions the procedure used to derive (32) breaks down. These special 
or preferred directions depend upon the ratio WIN alone, and are independent 
of the ratio U / N .  
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4.3. Asymptotic evaluation of the Green's function for preferred directions 

In directions determined by (33 ) ,  the expansion of the phase function (24) must 
be altered to retain third-order terms. The procedure followed here is also out- 
lined by Lighthill (1959). Again, we use the rotation of axes in wavenumber 
space ( 2 5 ) ,  and choose the angle $ to eliminate the cross term in the second-order 
expansion term (27). Then the phase-function expansion becomes 

Q h P )  2 $(Ej 'PJ + ~ K + r ^ 2 + Q C ~ B B B ' y j 3 + ~ p B ~ ' y j 2 ~ + ~ 9 5 ~ r ^ ~ 2 + ~ ~ ~ ~ 9 3 1 '  (34) 

where we have taken K... to be the principal curvature that vanishes. 
The important point is that the phase function now has both a quadratic and 

a cubic behaviour in the neighbourhood of the point of stationary phase. In  a 
general direction in space, as shown in (26)) the phase function increases quad- 
ratically with 'distance' in wavenumber space. The angle @ represents the rota- 
tion required in wavenumber space to bring the axes into coincidence with the 
principal directions of the quadratic form for the phase function. In preferred 
directions in space, one of the values of the principal curvatures in wavenumber 
space vanishes. Therefore, in one of the principal directions, the 9 direction in this 
case, the phase function increases quadratically, whereas it increases cubically 
in the other direction. Lighthill asserted that only the cubic term in {needs to be 
retajned, to obtain an approximate expression for the behaviour of the integral 
(17 )  in the preferred directions in space. When this is done, 

Q(a, P )  = QCaj, Pj )  + BK+(aj,Pj) q2 + QhatJaj, Pi) C3. (35 )  
Here, 

h 5z5 = - $ 5  aaa sin $ + sin2 + cos $ - 3q5aap cos2 $ sin $ + $spa cos3 $; (36 )  

and the third-order derivatives q5aa,, and are 

I 
( 1 - @"2/22)6  ( 2  - 3[2) [ - 2t2(1 - t2) + ( 2 -  3 t 2 )  ( 2 t 2 -  I)] 

5"i- t2I2 (a:$ (4(1-t2)2(1-$2r2/z2)6 
+ 

r2/z2) + (a  U / N )  ( 2  - 352) 

E2 
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Therefore, in preferred directions, the integral for G(c) becomes approximately 

j is summed over all points of stationary phase. 

5. Results 
The asymptotic analysis performed in Q 4 is formal, and does not provide much 

insight into the internal-wave system excited by a translating and heaving body. 
This section discusses the character of the waves excited, the variation in the 
nature of these waves with changing parameters (velocity of the body U ,  Brunt- 
Vaisala frequency N and heave frequency o), and finally the magnitude of t,he 
expressions obtained from the asymptotic analysis performed above. 

Lighthill (1959) gave a prescription for calculating surfaces of constant phase 
for waves in an anisotropic dispersive medium. For a three-dimensional wave 
system produced by a translating and oscillating body, the surfaces of constant 
phase are given parametrically by the vector equation 

1. 
a[ (aU/N + w / N ) ~  - 11 
+ U / N  (01 u p  + w N )  (a2 + p2 + r2) 

y(aU/N + w / N ) 2  

From the radiation condition, y can be eliminated through 
(39) 

I - - IAl 
(a1 U/IV(a U l N + w / N )  (a2+p2+y2)  /3[(.U/N+W/N)2- 11 I 

01 and p are parameters that describe the surface; and A is a constant which defines 
the particular constant-phase surface. The contours in figures 2-8 were computed 
by choosing a value of w / N  and taking JAl = U / N  = 1. Values of 01 were taken 
so that - 1 < aU/N +WIN < 1. A value of z was selected; and the equation for z 
was used to determine corresponding values of /3. Then x and y were calculated. 

There were two aspects of these surfaces to be discussed here. (i) The surfaces 
display different topological forms, depending upon the value of w/N and whether 
CJ is zero or not. (ii) Most of the surfaces display cusps; and cusp points define 
preferred directions. 

For the purpose of classification, there are five different topological forms 
which the surfaces of constant phase can take for a translating and/or oscillating 
excitation source, depending upon the values of o lN and U .  If U = 0, the 
body (excit,ation source) is a t  rest, but oscillating, and the surfaces of constant 
phase are vertical cones. This case is analysed in the appendix. 

The other extreme is when w = 0 and U + 0. I n  this case, the surfaces 
of constant phase are as shown in figure 2. The curve y = 0 represents the inter- 
section of the y = 0 plane with the constant-phase surface, and is plotted above 
the x axis. Below the x axis various curves are plotted, representing curves of 
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FIGURE 2.  Intersection curvcs through the constant-phase surface for WIN = 0. 

intersection of the constant-phase surface with z = constant planes. The body 
is a t  t4he origin translating with velocity U in the negative x direction, and the 
wavelength of the waves is 2 r U / N .  Hence the distance (or wavelength) between 
two successive crests (surfaces), geometrically similar to the surface displayed in 
figure 2, is 277UIN. The wave system is all confined to the region behind the body. 

When neither the velocity U nor the frequency w of oscillation of the body is 
zero, there are three remaining cases, w < N ,  w > N and w z N .  For the first 
case, figures 3-5 show three plots of surfaces of constant phase for different values 
of the ratio wlN, w / N  = 0.5, 0.75 and 0.9. As in figure 2,  the curves plotted above 
the axis are the intersection of the y = 0 plane with the constant-phase surfaces, 
and those curves below the x axis are the intersections for y > 0 of the constant- 
phase surface with various planes parallel to the x, y plane ( x  = constant planes). 

From these plots several features of the surfaces of constant phase for w/N < 1 
can be noted. (i) The waves spread both ahead of (to x < 0) and behind (x > 0) the 
body. This feature of the surfaces should be contrastedwith the surfaces generated 
by pure translation (shown in figure 2 ) ,  where the waves extend only behind the 
body, as already noted. (ii) The surface of constant phase has two sheets, one 
confined to the region behind the body (x > 0 )  and one that may extend both 
ahead and behind it. (iii) The sheet of the surface entirely behind the body ex- 
hibits cusps on the curves of intersection with z = constant planes. The cusp 
feature is very important, and will be discussed later. 
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FIGURE 3. Intersection curves through the constant-phase surface for w/N = 0.50. 
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FIGURE 4. Intersection curves through the constant-phase surface for WIN = 0.75. 

Finally, comparison of the surfaces for the three values of WIN, 0.5, 0.75 and 
0.90, shows that, as the ratio of WIN increases towards unity, the general shape 
of the surfaces remains the same, but the surfaces are contracted in the lateral, 
y direction while they are extended in the vertical, z direction. Hence they become 
more upright and more slender in the direction transverse to the motion of the 
body as o)lN = 1, discussed below. 



250 R. G. Rehm and H .  8. Radt 

FIGURR 5. Intersection curves through the constant-phase surface for WIN = 0.90. 

For u/N > 1, figures 6-8 show plots of surfaces of constant phase for the 
values of the ratio W I N  = 1.1,  1.212 and 4.0. They are plotted in the same fashion 
as figures 3-5, x above the x axis and y below. Several points should be mentioned 
concerning these surfaces. (i) They extend only over a finite region behind the 
body. This is in contrast with previously shown wave surfaces for WIN < 1, 
which extend to infinity in some directions. (ii) As when o/N < 1, these surfaces 
display a cusped behaviour a t  certain points. (iii) They are all topologically alike; 
and, as when W I N  < 1, they become more elongated vertically and more con- 
tracted in the lateral, y direction, as WIN approaches unity. 

It may be somewhat surprising that there are internal waves excited at  all 
uhen W I N  > 1. When the body is a t  rest ( U  = 0) and oscillating, internal waves 
are excited only when the oscillation frequency is less than the Brunt-Vaisala 
frequency (WIN < 1). Lighthill (1967) observed that a Doppler effect occurs 
when t'he forcing function exciting the waves is both transhting and oscillating; 
and this permits the excitation of internal waves for w/N > 1.  

Consider again figure 3 for the constant-phase surface when w/hr = 0-5. 
The surface behind the body has a cusped behaviour. For example, the curve 
describing the intersection of the plane z = 10 with the constant-phase surface 
has a cusp point, or il point at  which the shape along the curve is discontinuous, 
a t  approximatcly x = 20, y = 20 and x = 10. The locus of cusp points, or the curve 
joining adjacent cusps a t  each vertical level, defines a curve for which CT, y and 
x increase from values near zero out to infinity. A preferred direction, in t,he 
sense described in the asymptotic analysis of 3 4, is one defined by a line passing 
from the origin through one of the points on the locus of cusps (Lighthill 1959). 

The general far-field asymptotic decay of the wave field, with distance from 
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FIGURE 6. Iiitersection curves through the constant-phase surface for w/N = 1.10. 

the excitation source, can be summarized as follows. I f  a ray drawn in space 
from the excitation source in any arbitrary direction fails to intersect a constant- 
phase surface, no waves are effectively excited in the far field. If the ray does 
intersect a constant-phase surface, the analysis of $ 4  indicates that the wave 
amplitude will fall off with increasing distance R from the body as R-I. In certain 
directions the ray will pass from the origin through a point on the locus of cusps 
on the constant-phase surface. In one of these directions the wave amplitude 
falls off as R-8. 
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Z 

FIGI~RE 7. Intersection curves through the constant-phase surface for w/,V = 1.212. 

The expressions for the amplitude of the wave field in preferred directions was 
calculated for several values of the ratio W I N .  Figure 9 shows the result of these 
calculations. Here the amplitude function is plotted as a function of the angle 8 
that the preferred direction makes with the horizontal. Several features of this 
plot should be noted. It appears that the angles of the preferred directions above 
horizontal do not exceed 60", and in particular, that the preferred directions 
never become vertical. Also, the maximum angle above horizontal of the pre- 
ferred directions decreases rapidly when WIN becomes larger than unity. There- 
fore, even though the amplitude function increases fairly rapidly in magnitude 
with increasing o / N ,  the angle with the horizontal over which the waves spread 
is small. 

Finally, for w/N = 0.9, the curve of the amplitude function shows a sharp 
increase around 8 = 55". This sharp increase arises because the value of hCCS 
in the denominator of the Green's function (38) vanishes. Several other calcula- 
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FIGURE 8. Intersection curves through the constant-phase surface for o/N = 4.00. 
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FIGURE 9. Amplitude function along preferred directions as a function of angle above hori- 
zontal for various values of the ratio of heave frequency o to Brunt-Viiisala frequency N .  
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tions were made for w/N in the range 0.8 < w IN < 1-0 and similar behaviour was 
found. This behaviour is attributed to failure of the numerical procedure to 
accurately calculate A,,, when o / N  -+ 1. The asymptotic procedure outlined in 
3 4 breaks down when w = N ,  and apparently the accuracy required to calculate 
A,,, for the asymptotic expressions is greater. Detailed analysis of the case when 
w = N has not yet been carried out. 

The views and conclusions of this paper are those of the authors, and should not 
be interpreted as necessarily representing the official policies, either expressed 
or implied, of the Defense Advanced Research Projects Agency of the U.S. 
Government. This research was supported by the Defense Advanced Research 
Projects Agency of the U.S. Department of Defense and was monitored by the 
U.S. Army Missile Command under contract DAAH01-69-C-0961. The authors 
thank Mr Robert Wack and Mr John Moselle, who performed the computations. 

Appendix. Internal waves excited by an oscillating body at rest 
In this appendix we calculate the internal-wave system excited by an axially 

symmetric (about the vertical axis) slender body oscillating with a frequency 
below the Brunt-Vaisala frequency N (see figure 10). The body is assumed to be 
slender, and to execute small-amplitude oscillations, in the sense that both the 
vertical dimension or thickness of the body, compared with its horizontal 
dimension, is small, and the amplitude of the oscillation compared with its 
thickness is small. The fluid is assumed to be exponentially stratified, so that 
N is constant, and the Boussinesq approximation is made. The fundamental 
linear equation governing the vertical displacement cis (3). 

Internal waves from an oscilZ~t~ng source or vertically oriented dipole 

For the cases of interest the source functions Q are given by 

Q1 represents a distribution of sources located along the x = 0 plane and oscilla- 
ting in magnitude with frequency w ;  Q2 represents a distribution of dipoles with 
axes directed upward, oscillating in magnitude with frequency w and located 
along the z = 0 plane. Any oscillating slender body for which the plane of the 
body is horizontal and at  z = 0 can be represented by a superposition of these 
sources and dipoles. 

Fourier-transform techniques are used to obtain the Green's function solu- 
tions GCS), G") for the oscillating unit source and dipole, respectively. For con- 
venience, the source and dipole are located at  the origin. Hence, G" and G@) 
satisfy 
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FIGURE 10. Reference axes used for the analysis of the axisymmetric internal- 
wave system excited by an oscillating body. 

Fourier transforms, as defined in (lo),  are used to solve (A 3). As in the text, inte- 
gration over the wavenumber y can be carried out explicitly by using residue 
theory, and by applying the Sommerfeld radiation condition. Then the solution 
for the Green’s function can be written as 

The integrations over the wavenumbers can be carried out explicitly, using 
results of Olver (1964) and Erddyi et al. (1954, vol. 2), giving 

(A 5 )  9 121 - sgn z exp (iwt) 0 2 ( N 2  - w2 G(s) = 
2~ ( 2 ~ )  [wzrz- ( N Z - U ~ )  221%’ 

and 

Both G(s) and G@) are singular along the conical surfaces determined by 

w 
z = +  (N2 - w2)6 r* 

In  these preferred directions G(5) and G@) become infinite. However, in other 
regions o l  the fluid the internal-wave amplitudes are finite. If R = [r2+z2]* is 
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the distance from the origin to the point of observation, the internal-wave ampli- 
tude excited by an oscillating point source decays with distance as G(”K 1/R2, 
while that excited by a dipole falls off as GCd) K i/R3. 

Internal waves from an oscillating axisymmetric body 

Now consider a general axisymmetric distribution cf of oscillating sources or 
dipoles (u is only a function of r ) .  Denote by G(x, y ,  z, t )  either GO or G(m. The 
general internal-wave field excited by this distribution can then be written as 

where r‘ = ( c 2 + q 2 ) *  and 9 = arctan(q/<). 

Substitution of (A4) into (As) yields the following expressions for the vertical 
displacement prodnced by a distribution of sources and of dipoles, respectively: 

J ,  is the zero-order Bessel function, p = (a2 i-P2)*; and results from Magnus & 
Oberhettinger (1949) have been used. 

To apply the boundary conditions, these expressions are written in terms of the 
vertical velocity w = ayat.  Each of the distribution functions u(r) and d(r) can 
be determined by application of boundary conditions a t  the body surface and a t  
the remaining portion of the x, y plane. For a distribution of sources, the velocity 
above and below the region z = 0, 0 < r < 1 is directed away from this region. 
By symmetry considerations, the velocity at  z = 0 and I < r < co will be zero. 

w(s)(r, z = -t 0,  t )  = & W ( r )  exp ( iwt ) ,  0 6 r 6 1,l Thus, 

(Al l )  
zo(S)(r, x = 0,  t )  = 0, 2 < r < co, J 

(TJ 1 

0 0 
w(s ) (~ ,  z = 5 0,  t )  = rfr i exp  (id)! pdp J o ( p ) !  r’dr‘a(r’)Jo(pr’). (Al2) 

This integral equation for the determination of a(r )  can be inverted by using the 
Hankel transform relation (see e.g. ErdBlyi, vol. 2,  p. 5 ) .  Then 

u(r)  = 2W(r); (A13) 

and the source distribution is determined in terms of the velocity distribution 
along t,he surface of the slender body. 

Likewise the dipole distribution d  ̂ can be used to satisfy the boundary con- 
ditions when the velocity at the top and bottom of the body have the same 
magnitude and direction (heave motion of the body). In  this case, the problem 
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w(d)(r, z = 0, t )  = W ( r )  exp (iwt); 
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has mixed boundary conditions along the x ,  y plane. The velocity given on z = 0, 
0 6 r < I ,  is 

h 

(A 14) 

and the integral of the velocity from z = 0- to x = O +  must be zero from 
l < r < c o :  

z=o+ 
w ( ~ )  ( r ,  x ’ ,  t )  dz‘ = 0. (A15) -s z=o- 

Equations (A 14) and ( A  15) become 

(A 16) 

h - i  ( w p _ w 2 ) : / ;  
W ( r )  = - p2dpJo(pr)D(p) for 0 Q r Q I ,  2 W 

* p dp J,(pr) D(p) for r > I ,  0 = 
0 

where D ( p )  = lIr’dr’d(r’) Jo(pr’). 

The dipole distribution d(r)  can be expanded in terms of Legendre polynomials 
Pn as 

00 

d(r)  = [I - ( r /~ )2]  2 B,P,[I - (r/1)22] for o < r/l < I ,  
n=O 

= o  for 1 < r/l < co, 

yielding the velocity along z = 0, 0 < r Q 1, 

+(n+1)23’(n+%, -4-n; l;r2/12)). (A1S) 

The c2efficients B, can be determined in principle, for a given velocity distribu- 
tion W ( r ) .  Each component function [ 1 -  (r/1)2] Pn[l - 2(r/1)2] of the expansion 
for bhe dipole distribution d(r)  gives rise to an internal-wave field, which will be 
calculated asymptotically in the far field below. The source function v ( r )  is also 
expanded into component functions for which the asymptotic, far-field waves 
are calculated below. 

Amplitude of internal waves far from an oscillating axisymmetric body 
Return to the expressions for Q8)and c(d)given by (A 9) and (A lo), assuming that 
v ( r )  and d(r)  are chosen to satisfy proper boundary conditions. For the source 
and dipole distributions take the component functions 

v ( r )  = I?,( 1 - 2(r/Z)2) 

= o  

I7 
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Asymptotic evaluation of (A 9) and (A 10) for large distances from the body, 
R/l = (r2 + xz))B/Z 9 1, can be performed. With some manipulation, it can be shown 
that outside the regions around the preferred directions 

p) (I/R)Zn+2, c ( d )  (I/R)”+l (A2 1) 

to lowest order in I/R. In  the preferred directions, each component function 
varies with distance as 

p.C (l/E)+, p)cc (Z/R)t 

to lowest order in 1/R. Therefore, the amplitude c(O) of the internal waves excited 
by an axisymmetric body of horizontal dimension I can be written as 

Q O )  = C(dt)/w) (l/R)i. (A 23) 

C is a constant, which depends upon the particular type of excitation mechanism 
(bobbing body, fluid breathing body, etc.), and which is of order unity. u(t)is the 
magnitude of the velocity of oscillation a t  the body surface. I is the radius of the 
body. R is radial distance from the body. The quantity u(”/w is the magnitude of 
the fluid displacement at  the surface of the body. Since the problem has been Iine- 
arized, Q0) must be proportional to this displacement. 
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